Secure Code Distribution in Dynamically Programmable Wireless Sensor Networks ; CU-CS-1000-05
نویسندگان
چکیده
For deployed wireless sensor networks, reprogramming sensor nodes through the wireless channel is an important capability. To avoid reprogramming false or viral code images, it is important to make sure that each sensor node can securely receive its code image through the wireless channel. Public key schemes based on elliptic curve cryptography are feasible in wireless sensor networks, yet are still very expensive in terms of memory and CPU consumption. This paper explores hybrid mechanisms that combine the speedy verification of packetized code allowed by hash-based schemes with the strong authenticity provided by a public key scheme. Based on this idea, three schemes for secure code propagation are proposed. The chain based scheme works best when packets are received in the order they are sent with very few losses. The hash tree based scheme allows nodes to authenticate packets and verify their integrity quickly, even when the packets may arrive out of order. Finally, the hybrid scheme combines the advantages of the first two schemes, and further reduces memory consumption and number of public key operations that a node has to perform. Simulation shows that the proposed secure reprogramming schemes add only a modest amount of overhead to a conventional non-secure reprogramming scheme, namely Deluge, and are therefore feasible and practical in a wireless sensor network.
منابع مشابه
An efficient solution for management of pre-distribution in wireless sensor networks
A sensor node is composed of different parts including processing units, sensor, transmitter, receiver, and security unit. There are many nodes in a sensor unit. These networks can be used for military, industrial, medicine, environmental, house, and many other applications. These nodes may be established in the lands of enemies to monitor the relations. Hence, it is important to consider conse...
متن کاملA Secure Routing Algorithm for Underwater Wireless Sensor Networks
Recently, underwater Wireless Sensor Networks (UWSNs) attracted the interest of many researchers and the past three decades have held the rapid progress of underwater acoustic communication. One of the major problems in UWSNs is how to transfer data from the mobile node to the base stations and choosing the optimized route for data transmission. Secure routing in UWSNs is necessary for packet d...
متن کاملHybrid Key pre-distribution scheme for wireless sensor network based on combinatorial design
Key distribution is an important problem in wireless sensor networks where sensor nodesare randomly scattered in adversarial environments.Due to the random deployment of sensors, a list of keys must be pre-distributed to each sensor node before deployment. To establish a secure communication, two nodes must share common key from their key-rings. Otherwise, they can find a key- path in which ens...
متن کاملMitigating Node Capture Attack in Random Key Distribution Schemes through Key Deletion
Random Key Distribution (RKD) schemes have been widely accepted to enable low-cost secure communications in Wireless Sensor Networks (WSNs). However, efficiency of secure link establishment comes with the risk of compromised communications between benign nodes by adversaries who physically capture sensor nodes. The challenge is to enhance resilience of WSN against node capture, while maintainin...
متن کاملToward an energy efficient PKC-based key management system for wireless sensor networks
Due to wireless nature and hostile environment, providing of security is a critical and vital task in wireless sensor networks (WSNs). It is known that key management is an integral part of a secure network. Unfortunately, in most of the previous methods, security is compromised in favor of reducing energy consumption. Consequently, they lack perfect resilience and are not fit for applications ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015